Threaded

Boyer-Moore

Patrick Collins




Problem that I'll be solving

& Purpose of application: Parallelising Boyer-Moore Horspool search
algorithm.

& Will achieve through parallel programming, doing a threaded task farm
system.

& Once the task farm can find desired text whilst modifying thread amount, |
will compare them to find out if running more threads helps speed up the
Boyer-Moore algorithm.



Parallel Sections

¢ Farm::run() — All thread tasks run this at the same time to be told to search
their section. The text amount each thread has to search through is divided
to be the same amount.

& Stringsearch::run() — this is where the actual searching takes place. Each
task and thread goes here to search their part of the text.



How my application makes use of threads.

¢ Splitting up the text to search through, and searching their section of text all
at the same time. Uses substr() to achieve this.

& However, in a rare chance, it may cut off the pattern during this split,
therefore not finding all matches.

¢ Implemented to hopefully speed up algorithm search.



Thread Safety

& Mutex — in stringsearch::run() resetting results found from previous thread
before continuing.

¢ Unique mutex — When adding tasks, locking before running each task,
adding total matches for pattern from each thread.

& Channel - for adding returned time from each thread. In Farm::run().

& Checking if collection is empty — so queue.front() isn’t called when empty.



Data Structures

& For storing matches | will be using a list. Inserting at the back using
push_back() as this will be constant time O(1).

¢ The skipping will be done using an array as accessing the contents will be
constant time O(1).



@

Goals

Boyer Moore should be much
faster with more threads
running.

Box plots

Boyer Moore with 8 threads
should be relatively close
together, as the program should
run at relatively same speed.

Running with 1 thread the times
may vary a lot. No consistency.

Expected Results

Time complexity

Boyer-Moore-Horspool: Best
case O(N/M), worst-case
of O(NM).

Only parallelising the algorithm,
not modifying it. Time
Complexity should stay the
same.



®
&

® © O 9@

Performance Evaluation

1 thread (177377 range of text), 1 task.
8 threads(22172 range of text for each thread), 8 tasks.

Timing how long each thread takes in microseconds and adding+dividing to get total
time in milliseconds.

CPU performance evaluation to be done on: Intel(R) Core(TM) i5-8250U CPU @
1.60GHz

Base speed: 1.80 GHz
Cores: 4
Logical processors: 8

In the application, the user will not be able to start more threads than their CPU’s Logical
Processors.



Bigger text file

]Uﬂld load jute book(string& str) {
: // Read the whole file into str.
load file("jute-book.txt™, str);

1! [/ Extract only the main text of the book, removing the Project Gutenberg
- /f header/footer and indices.
str = str.substr(ex4d7);



Pattern=the (1,000 iterations)

1 Thread 3 threads

Boyer Moore Boyer Moore
14 - 8 1 —g—
7 - o
12 -
- 6 ©
L lD ] L
B B 5 —
= =
=] =]
W =
5 8 & 4
E £
= £ 37
6 - R .
i 2 -
4 -
l -
2 - —— 0 - ——
T T
Boyer Moore Boyer Moore
Algorithm Algorithm




Pattern=Dundee (1,000 iterations)

1 Thread 8 threads

Boyer Moore Boyer Moore
8 —g— 5 —g—
?'_
d S
6 ©
L ] _ L
2° — 2 3-
=] =]
i i
2 4 © i
E E , |
£ 31 o IS
2_ F o ¥

=
I

=]
=]

T T
Boyer Moore Boyer Moore
Algorithm Algorithm




Pattern=the (10,000 iterations)

1 Thread 8 threads

Boyer Moore Boyer Moore
16 —o— 14 —o—
P o
i
12
10
i v o
© 10 1 T
S N S 8 o
w w
8 8- o @ ©
T o Z 6- o
s 6 o = —
4 ° 4
2 2
0 - — 0 - —
T T
Boyer Moore Boyer Moore

Algorithm Algorithm




Pattern=Dundee (10,000 iterations)

1 Thread 8 threads

Boyer Moore Boyer Moore

_e_

=1} =] W
= Ln
o
=4

Ln

In milliseconds
=Y

1 1 1
)]

In milliseconds

w
O

o = I
o [l

T T
Boyer Moore Boyer Moore
Algorithm Algorithm




Profiling — CPU usage

Searching Dundee with 1 thread.

Diagnostics session: 15.127 seconds

I 1.25s 2.55 3.75s
4 CPU (% of all processors)
100
0

6.25s

1.5s

Top Functions

Function Name
stringSearch:run

[External Code]

[External Call] veruntime140.dll

[External Call] msvcp140.dll

std:list<__inted,std:allocator<__inté4 > =:list<__inte4d,std:allocator

<_int64> >

Total CPU [unit, %]
3787 (93.46%)

4052 (100.00%)

21 (0.52%)

2 (0.05%)

2 (0.05%)

Self CPU [unit, %] «,
3780 (93.29%)

248 (6.12%)

21 (0.52%)

1(0.02%)

1(0.02%)

12

Oper



Profiling — CPU usage

Searching Dundee with 8 threads.

Diagnostics session: 14.614 seconds

I 1.25s 2.55 3.75s 5s 6.25s 1.5s 8.75s 10s 11.25s
4 CPU (% of all processors)
100
0 ) bt

Top Functions

Function Name Total CPU [unit, %] Self CPU [unit, %]
stringSearch::run 3036 (65.35%) 3031 (65.24%)
[External Code] 4646 (100.00%) 1603 (34.50%)
<lambda_9dff25d67048169b10ad8945de7c0246> zoperator() 3245 (69.85%) 3 (0.06%)

main 424 (9.13%) 2 (0.04%)

test:~test 49 (1.05%) 2 (0.04%)



Effectiveness Of My Solution

& My objective was met. Parallelisation did speed up Boyer-Moore. More
threads helped reduce time significantly as seen by the box plots.

& Task farm method very suitable when parallelising Boyer-Moore.

& However, searching smaller words (the) actually did not affect performance
as much. Running 8 threads searching smaller words seemed to cut the
time boyer-moore has to search in half.

® S0, parallelisation did help in searching smaller words. Which was not what |
expected.



Any questions

2



